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Abstract 1

An n-dimensional system H = ∆n + V (x), where
∆n is the Laplace operator, is integrable if it
admits n algebraically independent commuting
symmetry operators. It is superintegrable if it is
integrable and admits 2n-1 algebraically
independent symmetry operators (the maximum
possible, but of course not all commuting). If the
independent symmetries can all be chosen of
order k or less as differential operators the
system is kth order superintegrable.
Superintegrability is much more restrictive than
integrability.
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Abstract 2

The operators of a superintegrable system
typically close under commutation to form an
algebra, not usually a Lie algebra, and the
representations of this algebra lead to new
special functions beyond those which rise by
solving the quantum eigenvalue problem
HΨ = EΨ. First order superintegrable systems
such as Helmholtz, Laplace or wave equations
(V = 0) have Lie symmetry algebras and most of
the special functions of mathematical physics
arise by separation of variables from such
equations, characterized by commuting sets of
2nd order symmetries.
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Absract 3

Eigenvalue problems for higher order
superintegrable systems are associated with
additional special functions, such as Painlevé
transcendents. Irreducible representations of
symmetry algebras lead to many new classes of
special functions, including discrete orthogonal
polynomials, such as multivariable Wilson
polynomials. We give examples and argue for
superintegrability as a useful organizing principle
for the theory of special functions.
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Desirable properties of a theory

Should lead naturally to at least the special
functions of mathematical physics, the basic
orthogonal polynomials, and other special
functions.

Should yield directly important basic
properties of these functions: recurrences,
generating functions, addition theorems,
orthogonality, etc.
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Superintegrability

Hamiltonian: H = ∆n + V (x) where ∆n is the
Laplacian on a Riemannian manifold, expressed
in local coordinates xj.

Superintegrable if there are 2n− 1 algebraically
independent differential symmetry operators

Sj, j = 1, · · · , 2n− 1

with S1 = H and [H,Sj] ≡ HSj − SjH = 0.

This is a very restrictive condition!
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Order of a System

The commutator, linear combinaton and
product of two symmetries is again a
symmetry, so they generate a nonabelian
symmetry algebra.

One of the miracles of superintergrability is
that this algebra typically closes under
commutation at finite order.

A superintegrable system is of order ℓ if ℓ is
the maximum order of the generating
symmetries other than the Hamiltonian.
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Integrability and Superintegrability

An integrable system has n independent
commuting symmetry operators.

A superintegrable system has 2n− 1
algebraically independent symmetry
operators (not all commuting). Typically a
superintegrable system is multiply integrable.

Note that if Ψ satisfies the eigenvalue equation
HΨ = EΨ and S is a symmetry operator, then
SΨ also satisfies the eigenvalue equation, i.e.
symmetries map solutions to solutions.
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Symmetries as Recurrences

If the superintegrable system admits n
commuting 2nd order symmetry operators
S1, · · · , Sn then typically it is separable and the
special function solutions are the common
eigenfunctions SjΨλ = λjΨλ where
λ1 = E, λ2, · · · , λn are the separation
constants.

Then the remaining generating symmetries
Sk, k > n, define special function recurrence
relations SkΨλ =

∑

µ cλ,µΨµ.
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Conformal Superintegrability 1

There is a similar definition of conformal
superintegrability for Laplace-type equations
HΨ = 0 where Hamiltonian: H = ∆n + V (x).

Conformally Superintegrable if there are 2n− 1
algebraically independent differential symmetry
operators

Sj, j = 1, · · · , 2n− 1

with S1 = H and [H,Sj] ≡ HSj − SjH = LjH, for
some differential operator Lj.
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Conformally Superintegrable 2

Note that if HΨ = 0, then H(SjΨ) = 0, so
conformal symmetries map solutions of the
Laplace equation to solutions.

Again, conformal symmetries lead to recurrence
relations for R-separable special function
solutions of the Laplace equation.
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Helmholz Equation on the 2-Sphere

2-sphere: s21 + s22 + s23 = 1

∆2Ψ = EΨ or (J2
1 + J2

2 + J2
3 )Ψ = EΨ

J3 = x1∂x2
− x2∂x1

, J2, J1, angular momentum
operators

n = 2, 2n− 1 = 3. 1st order superintegrable
with generators J1, J2, J3

Get finite dimensional eigenspaces for
Eℓ = −ℓ(ℓ+ 1), dimension 2ℓ+ 1
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Spherical Harmonics 2

Eigenfunctions of J3 define spherical
coordinate separation. Basis {Y m

ℓ }.

Action of J2, J3 on the basis yields the
m-recurrence relations for spherical
harmonics.

The symmetry algebra is a Lie algebra which
exponentiates to the rotation group and gives
the addition formula for spherical harmonics.

On the n-sphere get polyspherical harmonics.

11 pairs of commuting 2nd order symmetries
with separable eigenfunctions.
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Hypergeometric Functions 1

With change of variables can write flat space
Laplace equation ∆4Ψ = 0 as
(∂u1

∂u2
− ∂u3

∂u4
)Ψ = 0.

n = 4, 2n− 1 = 7, Can find 15 linearly
independent 1st order conformal symmetries
with 7 of them algebraically independent.
Simplest symmetries are dilation generators,
such as u1∂u1

+ u3∂u3
.

Can find 4 commuting dilation generators
whose common eigenfunctions take the form

Ψ = 2F1

(

α, β; γ; u3u4

u1u2

)

u−α
1 u

−β
2 u

γ−1

3
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Hypergeometric Functions 2

The 11 remaining symmetries determine the
differential recurrence relations for
hypergeometric functions.

The 15 1st order conformal symmetries
generate the symmetry algebra sℓ(4, C) This
exponentiates to the group SL(4, C) and
gives the addition formulas as well as other
properties of 2F1s,

Generalizes in various ways for larger n.
(Appell functions, Lauricella functions, Horn
functions,· · ·)
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Generic Potential on the 2-Sphere 1

Potential V = a1
s2
1

+ a2
s2
2

+ a3
s2
3

where

s21 + s22 + s23 = 1.

Equation HΨ ≡ (J2
1 + J2

2 + J2
3 + V )Ψ = EΨ

where J3 = s1∂s2 − s2∂s1, etc.

Generating symmetries S1, S2, S3 where
S1 = J2

3 +
a1s

2

2

s2
1

+ a2s
2

1

s2
2

, plus cyclic permutations.
Here H = S1 + S2 + S3 + a1 + a2 + a3.

2nd order superintegrable system
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Generic Potential on the 2-Sphere 2

Separates in spherical coords. Bound state
eigenfunctions are products of Jacobi
polynomials.

Separates in ellipsoidal coordinates. Bound
states are products of ellipsoidal wave
fuctions.

Action of symmetry generators S1, S2, S3 on
these bases leads to recurrences.

The symmetries generate a quadratic algebra
(not a Lie algebra).
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Quadratic Algebra Structure

R = [S1, S2]

[Si, R] = 4{Si, Sk} − 4{Si, Sj} − (8 + 16aj)Sj +
(8 + 16ak)Sk + 8(aj − ak),

R2 = 8

3
{S1, S2, S3} − (16a1 + 12)S2

1 − (16a2 +

12)S2
2 − (16a3 + 12)S2

3 +
52

3
({S1, S2}+

{S2, S3}+ {S3, S1}) +
1

3
(16 + 176a1)S1 +

1

3
(16 +

176a2)S2 +
1

3
(16 + 176a3)S3 +

32

3
(a1 + a2 + a3) +

48(a1a2 + a2a3 + a3a1) + 64a1a2a3.

i, j, k chosen so ǫijk = 1; {Si, Sj} = SiSj +SjSi
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Reps of the Quadratic Algebra 1

The generators S1, S2, S3 map the energy
eigenspaces into themselves

To understand multiplicities and structure of
the bound states, must classify the irreducible
representations of the quadratic algebra.

Since H commutes with all Sj, it is constant in
an irreducible representation.

Classify the structure of the irreducible
representations in terms of an S1 eigenbasis.
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Reps of the Quadratic Algebra 2

Surprise! For an irreducible representation
the action of S2 on the S1 basis yields the
general three-term recurrence relation for the
Wilson polynomials pn(t

2, α, β, γ, δ) =

4F3

(

−n, α + β + γ + δ − n− 1, α− t, α + t

α + β, α + γ, α + δ
; 1

)

with α = −a1+a3+1

2
+ µ, β = a1+a3+1

2
,

γ = a1−a3+1

2
, δ = a1+a3−1

2
+ a2 − µ+ 2.

If the representation is finite dimensional, we
obtain the Racah polynomials.
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Reps of the Quadratic Algebra 3

In this model S2 is multiplication by t2 and S1

is the second order divided difference
operator for the Wilson polynomials.

The structure relations give information about
the Wilson polynomials.

Thus the quantum mechanical generic
potential on the 2-sphere is intimately related
to the Wilson polynomials, even though the
1st system involves differential equations and
the 2nd involves difference equations.
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Generic Potential on the 3-Sphere 1

s21 + s22 + s23 + s24 = 1, 2n− 1 = 5

HΨ = EΨ where

H =
∑

1≤i<j≤4

(si∂j − sj∂i)
2 +

4
∑

k=1

ak

s2k
, ∂i ≡ ∂si.

2nd order superintegrable with generators

Sij ≡ Sji = (si∂j − sj∂i)
2 +

ais
2
j

s2i
+

ajs
2
i

s2j
,

for 1 ≤ i < j ≤ 4. 5 =⇒ 6 Theorem
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Generic Potential on the 3-Sphere 2

The generators determine a quadratic
algebra. The structure is far more
complicated than the 2D case and one
identity is of order 5 in the generators.

The irreducible representations of the
quadratic algebra lead exactly to the defining
relations for the 2-variable Tratnik
polynomials, a generalization of Wilson and
Racah polynomials,

Structure equations for Tratnik polynomials
were previously unknown.
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Generic Potential on the 3-Sphere 3

Simultaneous eigenfunctions of commuting pair
S12, S12 + S14 + S24 are Tratnik polynomials

pn1

(

t2, α, β, γ, δ
)

pn2

(

s2, n1 + β +
α + δ

2
, γ +

α + δ

2
,

M + 1 + b4 + β +
α + δ

2
,M + 1 + β +

α + δ

2

)

,

where α, δ depend linearly on s and t so wn1
is a

polynomial in both s and t. Other commuting
pairs give other bases.

Washington DC talk – p. 24/26



Generic Potential on the 3-Sphere 4

Result with E.G. Kalnins and Sarah Post.

Conjecture that generic potential on
N -sphere corresponds to N − 1-variable
Tratnik polynomials.

Similarly multivariable Hahn polynomials
related to the oscillator, and so it goes.

In 2nd order superintegrability theory it
appears that all such systems are limits
(using the Bôchner procedure) of generic
systems on spheres. Conjecture that this is in
close correspondence to the Askey scheme
for orthogonal polynomials.
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Painlevè transcendents

(∂2

x + ∂2

y + ~
2ω2

1P1(ω1x) + ~
2ω2

2P1(ω2y))Ψ = EΨ

Here, P1 is the first Painlevè transcendent. 3rd
order superintegrable. Other superintegrable
systems with the transcendents P2, P3, P4.

My claim: Superintegrability organizes the
theory of solutions of differential and
difference equations that are interesting
enough to be considered “special".

Extension to q-difference equations?
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